最全的数据结构排序算法实现及比较

冒泡排序

类似暴力破解,1 – n 个,每个都比较一次。完成排序

public void sort(int[] arr) {
    int len = arr.length;
    for (int i = 0; i < len; i++) {
        for (int j = i + 1; j < len - 1; j++) {
            if (arr[i] > arr[j]) {
                SwapUtil.swap(arr, i, j);
            }
        }
    }
}

选择排序

[ 排序完毕 | 未排序] 每次从未排序的找一个最小的放入到排序完毕的后边

public void sort(int[] arr) {
    int len = arr.length;
    for (int i = 0; i < len; i++) {
        int index = findMinIndex(arr, i);
        if (index !=  -1) {
            SwapUtil.swap(arr, i, index);
        }
    }
}
 
public int findMinIndex(int[] arr, int begin) {
    int len = arr.length;
    int index = -1, elem = arr[begin];
    for (; begin < len; begin++) {
        if (arr[begin] < elem) {
            index = begin;
            elem = arr[begin];
        }
    }
    return index;
}
堆排序

堆排序

先进行堆的构建,再进行堆的调整

@Override
public void sort(int[] arr) {
    int len = arr.length;
    sort(arr, len);
}
 
private void sort(int[] arr, int len) {
    buildMaxHeap(arr, len);
    adjust(arr, len);
}
 
private void adjust(int[] arr, int len) {
    for (int i = len - 1; i > 0; i--) {
        SwapUtil.swap(arr, 0, i);
        adjustHeap(arr, 0, i);
    }
}
 
private void buildMaxHeap(int[] arr, int len) {
    // 这里索引从 0 开始,所以最后一个非叶子子节点 array.length / 2 - 1;
    for (int i = len / BUILD_HEAP_SEPARATED - 1; i >= 0; i--) {
        adjustHeap(arr, i, len);
    }
    System.out.println("build heap : " + Arrays.toString(arr));
}
 
private void adjustHeap(int[] arr, int i, int length) {
    // 先把当前元素取出来,因为当前元素可能要一直移动
    int temp = arr[i];
    // 从左孩子开始遍历 ( 2i + 1)
    for (int k = 2 * i + 1; k < length; k = 2 * k + 1) {
        // 若右孩子存在,且右孩子大于左孩子
        if (k + 1 < length && arr[k] < arr[k + 1]) {
            // 转移到右孩子
            k++;
        }
        // 如果发现结点(左右子结点)大于根结点,则进行值的交换
        if (arr[k] > temp) {
            SwapUtil.swap(arr, i, k);
            // 如果子节点更换了,则以子节点为根的子树会受到影响,
     // 所以,循环对子节点所在的树继续进行判断
            i  =  k;
        } else {
            //不用交换,直接终止循环
            break;
        }
    }
}

希尔排序

这里采用数组长度一半作为希尔增量进行排序,每次减少一半,知道增量为1.排序完毕。

 @Override
public void sort(int[] arr) {
    int step = arr.length / 2;
    for ( ; step > 0; step /= 2) {
        for (int i = step; i < arr.length; i++) {
            int value = arr[i];
            int j;
            // 跳跃的插入, 因为增量的存在,所以,后移时,是当前增量后移
            for (j = i - step; j >= 0 && arr[j] > value; j -= step) {
                arr[j + step] = arr[j];
            }
            arr[j + step] = value;
        }
    }
 
}

插入排序

类似于选择排序,分为【排序 | 未排序区域】每次从未排序区域选取一个,再排序区域寻找位置,然后后移交换。

@Override
public void sort(int[] arr) {
    int len = arr.length;
    for (int i = 1; i < len; i++) {
        int elem = arr[i];
        int index = getIndex(arr, i, elem);
        if (index != i) {
            retreat(arr, index, i);
            arr[index] = elem;
        }
    }
}
 
/**
 * 获取插入排序所在索引
 * @param arr 数组
 * @param limit 已排序区间上界
 * @param elem 待排序元素
 * @return 要插入的数组
 */
private int getIndex(int[] arr, int limit, int elem) {
    for (int i = 0; i < limit; i++) {
        if (elem < arr[i]) {
            return i;
        }
    }
    return limit;
}
 
/**
 * 将数组内一段元素后移
 * @param arr 数组
 * @param begin 区间下界
 * @param end 区间上界
 */
private void retreat(int[] arr, int begin, int end) {
    while(end > begin) {
        arr[end] = arr[end - 1];
        end--;
    }
}

二路归并排序

@Override
public void sort(int[] arr) {
    mergeSort(arr, 0, arr.length - 1);
}
 
public void mergeSort(int[] arr, int left, int right) {
    if (left < right) {
        int mid = (left + right) / 2;
        mergeSort(arr, left, mid);
        mergeSort(arr, mid + 1, right);
        merge(arr, left, mid, right);
    }
}
 
public void merge(int[] arr, int left, int mid, int right) {
    int[] temp = new int[arr.length];
    int leftIndex = left, rightIndex = mid + 1, tempIndex = left;
    while (leftIndex <= mid && rightIndex <= right) {
        if (arr[leftIndex] < arr[rightIndex]) {
            temp[tempIndex++] = arr[leftIndex++];
        } else {
            temp[tempIndex++] = arr[rightIndex++];
        }
    }
    while (leftIndex <= mid) {
        temp[tempIndex++] = arr[leftIndex++];
    }
    while(rightIndex <= right) {
        temp[tempIndex++] = arr[rightIndex++];
    }
    // 将归并结果归坏到原数组中
    while (left <= right) {
        arr[left] = temp[left++];
    }
}

快速排序

设数组第一个元素为基准,

第一步:数组中所有元素,小于 基准 放到左边,大于 基准 放到右边,此时数组分为两部分,对于基准来说已经处于它应处的位置

第二步,对左右两半数组继续执行第一步,递归完毕,数组有序

时间复杂度: O(n*log2n) – 空间复杂度: good: O(log2n) – bad: O(n)

@Override
public void sort(int[] arr) {
    int len = arr.length;
    sort(arr, 0, len - 1);
}
 
private void sort(int[] arr, int left, int right) {
    if (left < right) {
        int mid = partition(arr, left, right);
        sort(arr, left, mid - 1);
        sort(arr, mid + 1, right);
    }
}
 
private int partition(int[] arr, int left, int right) {
    int sentry = arr[left];
    while (left < right) {
        while (left < right && arr[right] >= sentry) {
            right--;
        }
        arr[left] = arr[right];
        while(left < right && arr[left] <= sentry) {
            left++;
        }
        arr[right] = arr[left];
    }
    arr[left] = sentry;
    return left;
}

排序比较

排序方法 最好情况 最坏情况 平均情况 空间复杂度 稳定性
直接插入排序 O(n) O(n^2) O(n^2) O(1) 稳定
折半插入排序 O(nlong2n) O(n^2) O(n^2) O(1) 稳定
希尔排序 O(n^1.3) O(1) 不稳定
冒泡排序 O(n) O(n^2) O(n^2) O(1) 稳定
简单选择排序 O(n) O(n^2) O(n^2) O(1) 不稳定
快速排序 O(nlog2n) O(n^2) O(nlog2n) O(nlog2n) 不稳定
堆排序 O(nlog2n) O(nlog2n) O(nlog2n) O(1) 不稳定
归并排序 O(nlog2n) O(nlog2n) O(nlog2n) O(n) 稳定
基数排序 O(d(n+rd)) O(d(n+rd)) O(d(n+rd)) O(n+rd) 稳定

125jz网原创文章。发布者:江山如画,转载请注明出处:http://www.125jz.com/8811.html

(1)
江山如画的头像江山如画管理团队
上一篇 2020年10月12日 上午9:35
下一篇 2020年10月14日 上午9:13

99%的人还看了以下文章

  • js中var a=b=1和var a=1,b=1的区别

    js中一次性定义多个变量的时候,可以用:var a=1,b=1这种中间用逗号隔开的方式,但有些时候为了省事,直接定义var a=b=1。 那这两种写法方式最后效果是一样的吗?有没有什么区别呢?请大家看下面的范例: 1、用var a=b=1的方式 由上图可以明显看出来,变量b的作用域已经是全局的了,因为在函数外可以调用到(可以正常的输出变量)。 2、用var …

    2022年3月19日
    3.2K0
  • Ubantu为应用程序添加桌面图标

    按要求配置应用程序参数,为应用程序添加桌面图标,实现系统快捷启动。 Ubuntu桌面的左边(默认在左边)有一个启动器,类似于window的任务栏。在Ubuntu18中叫dock(船坞),有时候又叫收藏夹。本文统一叫做启动器 在使用 Ubuntu 操作系统进行开发过程中,由于Ubuntu 系统其操作方式主要通过命令行终端进行交互,故启动软件也一般通过终端键入应…

    2022年9月1日 编程开发
    4.1K0
  • 最清楚的过拟合(Overfitting)、欠拟合讲解

    问题的产生 当我们构建模型时,总会希望假设空间参数尽可能多,系统越复杂,拟合得越好嘛!我们还希望我们的优化算法能使我们的模型产生的损失函数的值尽可能小(即我们的假设空间能够贴合每一个训练样本点)。但这样真的好吗?奥卡姆剃刀貌似又胜利了。然而假设我们的模型达成了上述的情况,有很大概率产生一个ML界非常令人头疼的一件事:过拟合(Overfitting)。 欠拟合…

    2022年9月21日
    5.9K0
  • 第一章Java Web应用开发技术概述

    1、了解Java Web应用开发技术相关知识
    2、掌握jsp工作原理
    3、掌握开发环境搭建、开发工具的使用。
    4、掌握Java Web开发的基本步骤
    5、学会设计一个简单的网页程序并运行。

    2018年2月1日
    3.7K0
  • Java向mysql数据库插入datetime类型数据实例(精)

    在Mysql数据库中日期跟时间有两种: 1、date类型,date类型也就是我们常见的储存yyyy-MM-dd类型的日期,它不能储存时间,也就是只能储存日期, 2、dateitme就是可以储存日期同时也可以储存时间。 datetime可以保存1000-01-01到 9999-12-31的日期。 上面mysql数据库中birthday字段类型设置的是datet…

    2018年5月2日
    15.2K0
  • JS+CSS3制作图形验证码

    一个前端验证的验证码,利用JS和CSS3实现。

    2022年12月1日
    8.7K0

发表回复

登录后才能评论